
Rendering Nonphotorealistic Strokes with
Temporal and Arc-Length Coherence

Lubomir Bourdev

1.0 Objective

This system allows for rendering a silhouette of an object in a frame-to-frame coherent
way. The input to the system each frame is a set of silhouette pixels in a rendering of the object
and their corresponding silhouette edges in a polygonal model (mesh) of the object. The output is
a set of silhouette strokes.

2.0 Introduction

 Nonphotorealistic Rendering (NPR) deals with representing pictures and animation in, as
the name suggests, a nonphotorealistic fashion. While there is only one way to render a photo-
realistic image, in an NPR system we have the freedom to represent it in an unlimited number of
ways. By varying the style of rendering, the image composition and the level of detail, by omit-
ting or emphasizing certain parts of the drawing, we can direct the viewer’s attention and convey
a bias -- something that is not possible in photorealistic rendering systems.

Many nonphotorealistic rendering styles benefit from “economy of line” (Markosian,
1997) -- the picture is drawn with as few strokes as possible, omitting parts where detail is not
needed and drawing only the “important” strokes -- usually along the silhouette of the object. In
this paper we describe an algorithm for drawing silhouette strokes. The strokes can be rendered as
a simple polyline, or displaced from it either by a predefined function (e.g. sine waves) or a pat-
tern read from a file.

Our NPR system maintains a balance between temporal coherence (disallowing distract-
ing trembling of the strokes over frames) and arc-length coherence (maintaining a constant
period of repetition of the pattern in the stroke). It is not possible to achieve both temporal and
arc-length coherence simultaneously. For example, when an object approaches the camera, its
strokes become longer and we need to either stretch the patterns and thus violate arc-length coher-
ence, or insert new patterns and violate temporal coherence. The right behavior depends on the
style of rendering. For instance, arc-length coherence is very important when drawing text
strokes, since the text may become unreadable if stretched. On the other hand simple styles, like a
sine wave, look better when temporal coherence is preserved.

2.1 A Straw Man Approach

 One naive, straightforward approach to the problem of rendering the silhouette of a mesh
is as follows:
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 1

• render all triangles of the mesh in the frame buffer

• check all edges and determine the set of silhouette edges

• connect the adjacent silhouette edges into 3D silhouette strokes

• render the silhouette strokes in the desired style. The frame buffer handles the occlusion
problem.

There are several problems with this straightforward
approach. First, using the frame buffer to handle occlusion after
a style is applied to the stroke often causes occlusion problems.
In many styles the stroke may go behind the surface from the
camera point of view in which cases it is not drawn (fig. 1). The
shape of the stroke is defined on the film plane and there is not
a right way to define it in world space

Another problem is that, although it seems reasonable to
assume that adjacent silhouette edges form long connected
polylines, this is not so in practice, especially in the nearly pla-
nar regions, where some edges are slightly convex and others
are slightly concave. The predominant silhouette in such cases
consists of semi-occluded edges (fig. 2). Thus the simple idea
of connecting adjacent silhouette edges into strokes does not
give the desired effect. Moreover if a continuous style is
applied along such silhouette edges it would be broken into
small discontinuous pieces.

A third issue involves maintaining temporal coherence.
As the object changes position and orientation with respect to
the camera, the perceptual difference in a frame-to-frame ren-
dering of the silhouette should be minimized in most styles. In
other words, the phase of the silhouette stroke in any region on
the object should be maintained as much as possible across
frames. The straightforward approach does not provide for any
frame-to-frame (temporal) coherence -- the strokes constantly
change their length and no phase information is preserved from
the previous frame.

A fourth problem is that, just as in hand drawn illustrations, most stroke styles need to be
defined in screen space, and not in world space as the straightforward approach does. In other
words, the period of the pattern needs to stay constant as the object approaches or moves away
from the camera.

The system presented in this paper addresses these four problems.

Fig. 1 Using the frame buffer to draw
stroke in 3D causes occlusion problems

Fig. 2. The predominant silhouette consists
of a sequence of semi-occluded convex
and occluded concave edges

Fig. 2. The predominant silhouette consists
of a sequence of semi-occluded convex
and occluded concave edges

Fig. 2. The predominant silhouette consists
of a sequence of semi-occluded convex
and occluded concave edges
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 2

3.0 Algorithm Overview

Intuitively, to maintain temporal coherence we need to preserve the phase information (i.e.
the locations of the “bumps” of the stroke style) across frames. What the viewer perceives as the
same stroke in two consecutive frames, however, are in fact two different strokes and in general
there is no easy way to associate them -- they don’t necessarily span the same set of edges; some-
times a stroke is broken into several new strokes, or several strokes merge into one. The stroke or
a part of it may disappear or a new one may appear.

Because of this difficulty, we represent the stroke as a list of smaller units (which we call
silhouette particles), each of which maintains local phase information and tries to “survive” and
transfer this phase information across frames. Each silhouette particle is associated with one sil-
houette edge at a time and when its edge becomes non-silhouette, it tries to find another similar
silhouette edge that is close to it on the film plane (see Section 6.2). Each frame the particles are
partitioned into lists (or rings) of neighboring particles and each of those lists is used to construct
a stroke (see Section 6.4). The phase information of a stroke is determined from the local phase
information of its particles, their position along the stroke, and the stroke style. Once the phase at
each point along the stroke is determined, it is used to update back the phase information for its
particles (see Section 6.5).

The algorithm is described in more detailed below.

4.0 Definition of Terms

 Silhouette stroke. A 2D-polyline along the projection of the silhouette. The stroke can be
non-periodic or periodic. A non-periodic (homogeneous) stroke is drawn as a uniform
medium, for example a straight line. A periodic stroke is drawn by repeating a given
pattern. The length of the pattern is called a stroke period. Any position along a
periodic stroke corresponds to a displacement along its repeated pat-
tern. We say that the phase of the stroke at is equal to . Strokes can also be non-
stretching or stretching. A non-stretching stroke always preserves arc-length coherence
-- the period of repetition of its pattern is constant along the stroke. A stretching stroke
allows for variations in its period in order to achieve temporal coherence. This variation
may be “smoothed” over time to achieve a balance with arc-length coherence. The speed
of smoothing, which intuitively is the weight of temporal vs. arc-length coherence, is
called elasticity;

Silhouette edge. An edge of the mesh that lies on the silhouette from the current point of
view. In other words, one of its adjacent faces is front-facing and the other is back-facing.
Each edge has a:

• 2D direction -- a direction along the screen projection of the edge. We gather the screen
projections of all silhouette edges and orient them counter-clockwise when observed
from the camera point of view.

A
t 0 Period),[∈

A t

elasticity 0 1),[∈
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 3

• Stroke phase -- the phase of a periodic silhouette stroke at the origin of the edge. It may be
temporarily undefined if the edge was not visible or not on the silhouette in the previous
frame.

• Stroke style -- the shape (pattern) of the stroke along that edge, its period, its amplitude
along and across the edge, whether or not the stroke is stretching and whether and how
much it adjusts over time

Silhouette pixel. A pixel in the frame buffer that arises from the rasterization of a (visible) sil-
houette edge. We say that a silhouette pixel “belongs to” the associated silhouette edge.

Silhouette particle. An 8-connected set of all silhouette pixels that belong to the same silhou-
ette edge. A silhouette particle corresponds to a segment on the screen projection of a sil-
houette edge. Its 2D direction is the same as the 2D direction of its edge. Each particle has:

• Edge. A link to a silhouette edge that the particle corresponds to.

• Beginning (t0) and end (t1) t-values. A t-value of an edge we call a linear parametrization
along the edge that is 0 at its beginning and 1 at its end. t0 and t1 define the (visible) seg-
ment along the silhouette edge covered by the particle. . The

beginning of the particle is the location on the edge determined by , and the end -- the

location determined by .

• Phase. The phase of the edge evaluated at . Undefined if the edge’s phase is undefined.

• List of all adjacent particles. Two silhouette particles are adjacent when their pixels form
one 8-connected cluster.

• Optional previous and next neighbor. A silhouette particle is a neighbor of another sil-
houette particle if they are adjacent and passes the criteria for neighborhood
defined in Section 6.2. If the beginning of corresponds to the end of then is a
next neighbor of and is a previous neighbor of . Each particle has at most one
previous and one next neighbor at a time.

ID reference image. A 2D array each element of which corresponds to a pixel and its value
indicates the edge or face that is rasterized on the pixel. Using an ID reference image
one may perform a ray test in constant time. (see Section 6.1)

5.0 Operations on phases

In the implementation section we will be discussing normalizing and averaging phases.
This section contains the associated formulae. Let and be phases and be their period. A

normalized value of a phase is its corresponding value within the range :

t0 t1, 0 1) t0 t1<, ,[∈

t0

t1

t0

A
B A

A B A
B B A

h0 h1 P
0 P),[

norm h0() h0 h0 P⁄ P⋅()–=
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 4

A phase difference between the normalized phases and with a period we call the

smallest value that when added to and normalized will result in ;

A weighted average of with a weight and with a weight is:

Note that if the two phases lie in a half-period, this corresponds to the common “average”.
A weighted average of more than two phases can be approximated as:

The above formula gives the exact weighted average only if all phases lie within some
half-period. However it is sufficient for our purposes.

A phase distance between phases and , positioned at arc-length distance from

each other is the closest value to that when added to and normalized would give .

Intuitively, a phase difference is an estimate of how many periods are there along the
stroke from to . In a non-stretching stroke, for example, the phase difference always equals
the arc-length distance.

h0 h1 P

h0 h1 diff h0 h1,() P
2
---– P

2
---, �
�∈

diff h0 h1,()
norm h1 h0–() if norm h1 h0–() P

2
---<

norm h1 h0–() P– otherwise
�
�
�
�
�

=

h0 w0 h1 w1

avg h0 w0 h1 w1, , ,() norm h0 diff h0 h1,()
w1

w0 w1+
-------------------⋅+� �

� �=

avg h0 w0 … hi wi, , , ,() avg avg h0 w0 …hi 1– wi 1–, , ,() wk

k 0=

i 1–

� hi wi, , ,
� �
	

	

� �

= i 1>

h0 h1 d
d h0 h1

pdist h0 h1 d, ,() d diff norm h0 d+() h1,()+=

h0 h1
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 5

6.0 Implementation

6.1 Initialization

Every frame we render the faces of the mesh in the frame buffer. We examine each edge
and determine those that lie on the silhouette. Then we render the silhouette edges in the frame
buffer, each with a unique color value. The resulting frame buffer is our ID reference image.
Because each edge and face is rendered with a different color, we can look up the edge or face that
is rasterized on any pixel given its color and essentially perform a ray-test in constant time. All
silhouette pixels in the ID reference image are supplied as an input to the silhouette rendering sys-
tem.

6.2 Updating stroke phases

This step is skipped for homogeneous strokes or if the stroke style doesn’t require tempo-
ral coherence.

As we mentioned above, when rendering periodic strokes it is necessary to maintain the
stroke phase information across frames. The stroke phase is stored in the edges. This allows for
stroke phase consistency in the rare cases when more than one particle covers the same edge (fig.
3).

The stroke phase updating is illustrated in figure 4. If a silhouette edge in the previous
frame is not a silhouette edge in the current frame, then the stroke phase information it keeps has
to be passed over to an appropriate successor -- edge . We find edge by searching in the ID

reference image starting from the middle of the particle and going along the perpendicular of

q2

p3 p3

q2

Fig. 3. Each visible section of an edge has
its own particle (their spans are indicated
in red and green) The phases of those parti-
cles need to match

current
silhouette former

silhouette

q1

q2

q3p1

p2

p3

Fig. 4. Updating phases of particles. In this example each edge has exactly
one particle. When an edge becomes non-silhouette, its particle searches
through the ID reference image for an appropriate substitute edge.

A

B

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 6

in a direction towards the current silhouette. The stroke phase at point is passed over to point
.

Sometimes two former silhouette edges may pass over their stroke phases to the same
recipient (like and to on figure 4). In such cases all suggested stroke phase values, eval-
uated at the beginning of the edge, are averaged. It is also possible that a current silhouette edge
receives no stroke phase information (edge).

To qualify as a stroke phase recipient (successor), the edge must be from the same mesh
and must have the same stroke style and a similar direction.

6.3 Covering the silhouette pixels with particles

In this step each 8-connected set of silhouette pixels in the ID reference image that belong
to the same edge is assigned a new silhouette particle. This is done using a recursive depth-first
traversal of the 8-connected set. The list of adja-
cent particles and the beginning and end t-values
(t0 and t1) for each particle are computed during
this step.

An example of this process is illustrated in
figure 5. The red, green and cyan pixels fall on the
rasterization of edges , , and respectively
and the grey area is where faces of the mesh are
rasterized. The direction of the edges, counter-
clockwise, is also indicated. Edge occludes

edge and that is why its pixels override ’s

pixels. Pixels of the same color are grouped into one particle. The red particle covers edge

completely and thus and for the edge . The green particle, however, does not

cover its edge completely in either direction. For it, is approximately 0.25 and for -- approx-

imately 0.95. Edges and are adjacent, and so are edges and .

6.4 Connecting neighboring particles into strokes

In this step for each particle given its list of adjacent particles we select its previous and
next neighbor. This is a matching problem that in this case requires an approximate but fast solu-
tion. It is solved using two passes. The first pass is fast and handles most of the cases. The rest of
the cases are handed in the second pass after a more careful evaluation.

A
B

q2 q3 p3

p2

e1 e2 e3

e3

e2 e2

e1

t0 0= t1 1= e1

t0 t1

e1 e2 e2 e3

Fig. 5 Covering the silhouette edges with parti-
cles. The squares correspond to pixels in the ID
reference image

e1

e2
e3
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 7

Let and are particles and and are their corresponding edges. To consider

as a prospective next (respectively previous) neighbor of the following conditions are exam-
ined:

1. does not have a next neighbor

2. does not have a previous neighbor

3. and are adjacent

4. ’s particle last frame was a next neighbor of ’s particle (in the rare case when an
edge has more than one particle, this heuristics picks one of them and might fail)

5. and are adjacent

6. and have similar directions

7. ’s beginning pixel is adjacent to ’s end pixel.

Conditions 1, 2, and 3 are required -- if any of them fail, then cannot be a next neighbor

of . We use conditions 4 and 5 in the fast decision pass -- if both of them are true, then

becomes the next neighbor of . We perform the second pass for those pairs of particles for
which the first pass is unsuccessful. In the second pass we evaluate conditions 4 - 7 and assign a
weight to each of them. becomes the next neighbor of only if the sum of the four weights is

above a certain threshold. The
weights and the threshold are manu-
ally adjusted for optimal performance.

Although edges and are
adjacent on figure 5, they are unlikely
to become neighbors because of the
sharp angle they have (violating con-
dition 6). Of course, and are not
even considered as prospective neigh-
bors since they are not adjacent (vio-
lating mandatory condition 3)

We construct a new silhouette stroke for each doubly-linked list (or ring) of neighboring
particles. We compute the 2D polyline of the stroke from the screen projections of the end points
of the edge segments corresponding to each particle. If a point on the polyline is not peripheral
then there are two edge segment end points corresponding to it and their locations are averaged
(points A, B and C on figure 6). As indicated on the figure, although the screen projections of two
adjacent edges may share the same endpoint, this is not always true in practice for the regions
covered by their particles (the black segments on figure 6). The reasons for this are round-off
errors caused by the rasterization (as is the case with the end of edge e2 in figure 5) as well as the

p1 p2 e3 e2 p1

p2

p2

p1

p1 p2

e1 e2

e1 e2

e1 e2

p1 p2

p1

p2 p1

p2

p1 p2

e1 e2

e1 e3

Fig. 6. Regions of silhouette edges covered by their particles (in black)
and the silhouette stroke resulting from them (in red)

A

B

C

Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 8

particular rasterization algorithm of the hardware, as explained in the Implementation Details sec-
tion. In either case those differences are smaller than a pixel size and therefore have no visual
effect.

6.5 Computing the phase values along a stroke

After we connect the neighboring particles in strokes, for each stroke we need to re-evalu-
ate the phase values of its particles given their current phase values, their positions along the
stroke and the stroke style. This step is skipped for homogeneous strokes and for strokes whose
styles don’t require temporal coherence.

Let denote the number of particles in a stroke, denote the arc-length distance along

the stroke from its beginning to the beginning of particle (and thus), denote the

phase value of particle at the beginning of this step1, and denote the new phase value of par-

ticle , which is to be computed in this step. Let

6.5.1 Non-stretching strokes

Because the period anywhere along a non-stretching stroke is constant, once we compute
, we implicitly define the phase value anywhere along the stroke. To compute the initial phase

of the stroke, , we average the phases of its particles evaluated at the beginning of the stroke
(we use only those particles whose phases are defined).

If none of the particles has a defined phase then the stroke is “new” in the image and we
can pick any phase as its initial one. After computing the initial phase, we can infer the rest of the
phases:

6.5.2 Stretching strokes

While for non-stretching strokes we preserve arc-length coherence in full, for stretching
ones we need to balance it with temporal coherence. Thus, for each particle we need to compute a

1. For clarification, if the edge of particle was a silhouette edge in the previous frame, then is carried over from
the previous frame. Otherwise it is obtained as described in Section 6.2 and may be undefined for some or all par-
ticles as is the case for particle in fig. 5

n di

i d0 0= hi

i hi'

i hi

p2

i di j, dj di–=

h0'

h0'

h0' avg norm h0 d0–() 1 … norm hn dn–() 1, , , ,()=

hi' norm h0' di+()=
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 9

phase that would satisfy arc-length coherence, , and another one that would satisfy temporal

coherence, .

The temporal coherence phase, , is the current phase of the particle, , provided that

 is defined. Otherwise we need to interpolate from the phases of the two closest particles,

and on both sides of particle1:

To get an estimate of the arc-length coherence phase, , we compute the weighted aver-

age of the phases of the closest particles to i, evaluated at the beginning of , with weights
inversely proportional to the square of their arc-length distance to :

We used with satisfactory results.

The computed phase, , is the average of and weighted by the elasticity of the
stroke:

As the formula shows, the more elastic a stroke is, the more it weighs arc-length coher-
ence and the faster it “smooths” over time.

1. If either or does not exist (i.e. all particles before or after have undefined phases) then is set according to

the arc-length distance to between and its closest particle along the stroke with a defined phase.

lci

tci

tci hi

hi tci p

q

p q i tci

i

tci

hi if hi is defined

norm hp pdist hp hq dp q,, ,()
dp i,
dp q,
---------⋅+� �

� � otherwise
�
�
�
�
�

=

lci

i
i

lci avg norm hi k+ di k+ i,+() 1
di k+ i,()2

---------------------- …, ,
� �
	

� �

=

where k goes 1 1 2 2 … q q and i k+ 0 n),[∈,–, , ,–, ,–

q 2=

hi' lci tci

hi' avg lci elasticity tci 1 elasticity–, , ,()=
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 10

7.0 Implementation Details

7.1 Relying on the hardware rasterization

There are two key data path flows in our
NPR system. In one of them the vertices of the mesh
are transformed to camera space and perspective pro-
jection is applied, followed by screen-space scaling.
The other path flow involves matrix transformations
in hardware followed by rasterization in the frame
buffer. This algorithm relies on the pixel-exact
matching of the data from the two pathways -- in
particular, the ideal projection of an edge done in
software should theoretically fall within its rasterization in the frame buffer. In our implementa-
tion, however, sometimes the edge projection falls a pixel off its rasterization. A reason for that
might have to do with the specifics of the hardware rasterization algorithm. However the discrep-
ancies were not significant enough to affect the results.

7.2 “Parasite” strokes

When nearly planar regions of the mesh become nearly perpendicular to the film plane, we
often observe multiple silhouette edges at various depths along the silhouette that make it in the
frame buffer. Their pixels are grouped into particles and the particles into small strokes that are
parallel to the main silhouette stroke as illustrated on figure 7. Such “parasite” strokes may some-
times cause breaking of the main stroke into smaller components and also add unnatural thicken-
ing of the silhouette. Their effect can be minimized by not drawing particles shorter than a certain
threshold, but that results in omitting small but important details of the mesh.

8.0 Discussion

8.1 Results

Our test machine is a 300 MHz Sun UltraTM 2 Model 2300 with Creator 3D graphics. The
NPR system reaches 11.8 frames/sec with simple, homogeneous silhouette lines and 10.3 frames/
sec with elastic sine wave periodic silhouette strokes using the model snapshots of which are
shown on figures 8 and 9. The model has 5660 triangles; the ID reference image (which was com-
puted in both cases) is of size 256x256 pixels and the screen -- 512x512 pixels. The sine waves on
these figures are enlarged so that the coherence can be observed more easily. Snapshots are illus-
trated in figure 10.

Figure 7. A nearly planar region viewed from the
side. The main silhouette stroke is drawn in blue and
the parasite ones -- in red
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 11

Fig. 8 s (B)

A

A
Fig. is (B)
8.2 Future work

The only way in the current implementation that we can achieve inexactness of the style,
typical of hand drawn illustration, is by creating a sequence of “bumps” by hand and treating them
as one large pattern. The problem with that approach is that, the larger the pattern is, the harder it
is to satisfy temporal coherence. A possible future research project is finding a more elegant way
of solving that problem, for example by maintaining a set of patterns and selecting from them at
random. Other future projects are implementing a collection of stroke styles and building a user
interface for creating hand-drawn patterns.

9.0 Acknowledgments

I would like to thank Lee Markosian and Prof. Hughes for the bright suggestions they gave
me and the time they spent on this project. Many thanks to my colleagues Michael Kowalski, Car-
oline Dahllof, Dave Bremer and Loring Holden.

Rotation of a triceratops with enabled temporal coherence. Original image (A) and after rotation around axis parallel to camera X axi

B

B
9 Rotation of a triceratops with disabled temporal coherence. Original image (A) and after rotation around axis parallel to camera X ax
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 12

10.0 References

Fig. 10 Snapshots from our NPR system
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 13

• L. Markosian, M. Kowalski, S. J. Trychin, L. Bourdev, D. Goldstein, J. F. Hughes Real-Time
Non-photorealistic Rendering. In Proceedings of SIGGRAPH ‘97,.pp. 415-420, 1997

• R. Zeleznik, K. Herndon, and J.F. Hughes. Sketch: An interface for sketching 3d meshes. In
Proceedings of SIGGRAPH ‘96,.pp. 163-170, 1996

• J.Foley, A. van Dam, S. Feiner, and J.F.Hughes. Computer Graphics: Principles and Practice,
Addison-Wesley, 1992

• F.P.Preparata and M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
1985
Rendering Nonphotorealistic Strokes with Temporal and Arc-Length Coherence 14

	1.0 Objective
	2.0 Introduction
	2.1 A Straw Man Approach

	3.0 Algorithm Overview
	4.0 Definition of Terms
	5.0 Operations on phases
	6.0 Implementation
	6.1 Initialization
	6.2 Updating stroke phases
	6.3 Covering the silhouette pixels with particles
	6.4 Connecting neighboring particles into strokes
	6.5 Computing the phase values along a stroke
	6.5.1 Non-stretching strokes
	6.5.2 Stretching strokes

	7.0 Implementation Details
	7.1 Relying on the hardware rasterization
	7.2 “Parasite” strokes

	8.0 Discussion
	8.1 Results
	8.2 Future work

	9.0 Acknowledgments
	10.0 References

